

Center for Satellite and Hybrid Communication Networks

Hybrid Network Control

Faculty: A. Ephremides

Graduate Students: W. Luo, T. Elbatt, D. Friedman

Industry Support: Northrop Grumman

Industry Interest: Rockwell, GTE

Industry Advisory Board Meeting February 17, 1999

MULTI-USER DETECTION ON BOARD

(Interim Report)

Background

$$x_{k}(t) = \sum_{i=-M_{k}}^{M_{k}} b_{k}(i) s_{k}(t - iT_{k} - \tau_{k})$$

$$k = 1, ..., K$$

$$r(t) = \sum_{k=1}^{K} x_{k}(t) + n(t)$$

$$b_{k}(i) = \begin{cases} +1 \\ -1 \end{cases}$$
WGN

Matched Filter Bank

$$y_k(i) = \int_{\tau_k + iT_k}^{\tau_k + (i+1)T_k} r(t) s_k(t - iT_k - \tau_k) dt$$

$$y_k(i)^{+1}$$

Threshold

$$\min_{\overline{b}} \|\overline{y} - R\overline{b}\| \quad \text{i.e. max likelihood}$$

$$\overline{y} :< y_k(i) > \overline{b} :< b_k(i) >$$

$$R:\langle s_m(t-nT-\tau_m), s_k(t-iT-\tau_k)\rangle$$

Sub-optimum MUD

- MMSE

$$\min E(\left\|\overline{b} - A\overline{y}\right\|^2)$$

Decorrelator

$$\hat{\overline{b}} = R^{-1}\overline{y}$$

Successive Interference Cancellation

$$\langle r, s_1 \rangle = y_1 \circ thresh \rightarrow \hat{b_1}$$

$$y_2' = \langle r - \hat{b}_1 s_1, s_2 \rangle \gtrsim thresh \rightarrow \hat{b}_2$$

$$y_3' = \langle r - \hat{b}_1 s_1 - \hat{b}_2 s_2, s_3 \rangle thresh \rightarrow \hat{b}_3$$

Status Report

- 1. Optimum Detector: High complexity (exponential in K)
- 2. Error Probability Performance: Difficult to calculate (depends on \bar{s}_k 's & R)

$$P_{k}(i) \leq \sum_{\widehat{\in} \in F_{k}(i)} 2^{-w(\overline{e})} Q\left(\|\overline{e}\|_{R/\sigma}\right)$$
set of indecomposable sequences
$$\overline{e} = \overline{b} - \widehat{b} \text{ error sequence}$$

3. Other difficulties: Synchronization, energy consumption

Our Answers (so far)

1. Optimum Detector <u>can</u> have polynomial complexity

All that is needed is negative cross-correlations among the \overline{S}_k 'S

(*m*-sequences, Gold sequences, etc.)

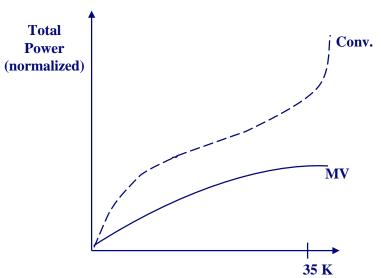
AND synchronism

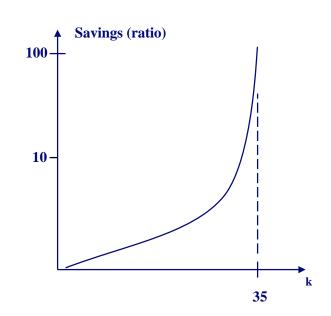
- 2. Error Probability <u>can</u> be calculated (full characterization of indecomposable sequences)
- 3. Energy Consumption

Transmission vs. Reception

very interesting Sub-optimal MUD's have results processing comparable to (read further) conventional receiver

SIC

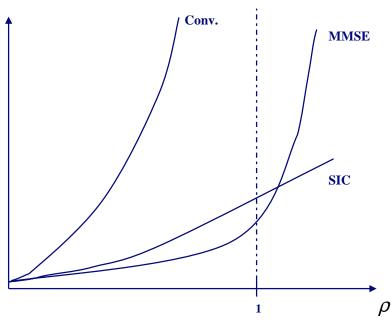

(suitable for long sequences & with minimal processing)


Some Typical Results

uniform correlation

$$\langle \overline{s}_m, \overline{s}_k \rangle = r = 0.002$$

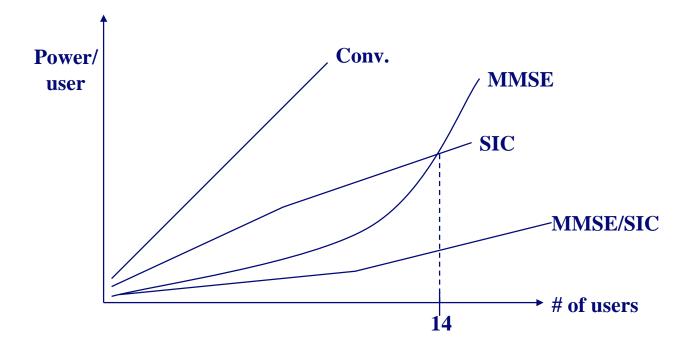
MULTI-USER DETECTION ON



BOARD (cont.)

Power/user

L: processing gain


$$r = \frac{1}{L}, \quad L \to \infty, K \to \infty, \quad \rho = \frac{K}{L} = \text{constant}$$
(measure of load)

• Simulation Result

Conclusion

- 1. Multi-User Detection has "cracked the nut" of multi-user communication.
- 2. Multi-User Detection is ripe for use on-board satellite
 - complexity can be made reasonable
 - performance advantage can be calculated
 - energy savings (on the mobiles) dramatic
- 3. Time to pass on to specific designs